Titan: Zu wertvoll für den Abfall. Recyclingverfahren reduziert CO2-Ausstoßes um bis zu 80 Prozent
Titan: Zu wertvoll für den Abfall. Neues Recyclingverfahren reduziert CO2-Ausstoßes um bis zu 80 Prozent – Institut für Fertigungstechnik und Werkzeugmaschinen – Leibniz Universität Hannover
Zu wertvoll für den Abfall: Bei der spanenden Fertigung von Titanbauteilen wird ein Großteil des Rohstoffs in Form von Spänen entsorgt. Die Zerspanraten für große Bauteile für die Flugzeugstruktur liegen beispielsweise oftmals über 90 Prozent. Dies will das Forschungsprojekt Return II federführend vom Institut für Fertigungstechnik und Werkzeugmaschinen der Leibniz Universität Hannover in Kooperation mit vier spezialisierten Industriepartnern aus dem Flugzeugbau und der Recycling Industrie ändern.
Ziel des Projekts ist, einen übergreifenden Werkstoffkreislauf zwischen additiven und subtraktiven Prozessketten für die Herstellung von Titanbauteilen zu entwickeln. „Wir wollen mit der Entwicklung einer Fertigungsprozesskette zur Umwandlung von Spanmaterial in Pulver eine Steigerung der Ressourcen- und Energieeffizienz erreichen“, erläutert Projektmitarbeiter Jonas Matthies.
Titanbauteile werden heute vorwiegend spanend aus Vollmaterial hergestellt. Das anfallende Spanmaterial – in der Luftfahrt mit einer Zerspanrate von bis zu 95 Prozent – wird im Anschluss üblicherweise nicht hochwertig recycelt, sondern in weniger anspruchsvollen Prozessketten (z. B. als Zuschlagsstoff in der Stahlindustrie) zugeführt. Matthies: „Beim Zerspanprozess werden die Titanspäne stark verunreinigt, unter anderem durch Oxidation, Kühlschmierstoffrückstände und Werkzeugpartikel. Diese Verunreinigungen erschweren das Recycling der Späne maßgeblich.“
Die aktuelle Prozesskette der Titanbauteilherstellung hat hinsichtlich Wirtschaftlichkeit, Energieeffizienz und Ressourcenschonung deutliche Defizite. Mit der Schaffung eines geschlossenen Werkstoffkreislaufs, bei dem ein Großteil der anfallenden Titanspäne für den Wiedereinsatz verwendet wird, wollen die Projetmitarbeiter diesen Defiziten begegnen. Der Forschungsansatz birgt ein beträchtliches ökologisches und ökonomisches Potenzial.
In Grundlagenuntersuchungen haben die Forscher des IFW bereits zeigen können, dass durch gezieltes Einstellen der Prozessgrößen die Verunreinigungen in den Titanspänen deutlich reduziert werden. Durch einen erneuten Einschmelzprozess konnte so Titanvollmaterial aus recycelten Spänen in hoher Qualität für Luftfahrt-Anwendungen hergestellt werden.
Jetzt untersuchen die Mitarbeiter des vom Bundeswirtschaftsministerium geförderten Projekts, ob und in welcher Weise sich die Ergebnisse aus den bisherigen Untersuchungen auf die Herstellung von Titanpulver für die additive Fertigung beziehen lassen. Dabei soll versucht werden, den energieintensiven Einschmelzprozess zu umgehen und die Späne direkt einem Verdüsungsverfahren zur Herstellung von feinstem Pulver zuzuführen. Matthies: „Durch eine Verwendung von Spänen als Eingangsmaterial in der Pulverherstellung erwarten wir eine Reduktion des Energieaufwandes und des CO2-Ausstoßes um bis zu 80 Prozent.“ Dies entspricht etwa 90 kg CO2/kg Titanpulver sowie 170 kWh/kg.
Durch die so zu erwartende Verbesserung der Wirtschaftlichkeit der additiven Fertigung von Titanbauteilen und der daraus zu erwartenden Steigerungen des Bauteilspektrums, ergeben sich weitere Potenziale für CO2-/Energiereduktionen. Die additive Fertigung eröffnet im Vergleich zur spanenden Bearbeitung neue Möglichkeiten hinsichtlich des Leichtbaus und bionischer Strukturen, die die Effizienz des Endprodukts erhöhen und somit zu weiteren Energieeinsparungen führen. Matthies: „Die mit den Projektpartnern entwickelte Prozesskette soll es ermöglichen, Titanbauteile aus bisher nicht recyceltem Titan ökologisch und kostengünstig herzustellen.“
Die Forscher versprechen sich mit einer anschließenden Analyse von additiv hergestellten Bauteilen Information über das gezielte einstellen von Bauteileigenschaften in der übergreifenden Prozesskette. Matthies: „Der Vorteil einer ganzheitlichen Betrachtung der Prozesskette liegt in dem Wissen der verschiedenen Wirkmechanismen an den verschiedenen Stationen der Fertigung. Durch Justieren dieser Stellschrauben ist es möglich, gezielt Bauteile mit spezifischen Materialeigenschaften herzustellen.“
Kontakt:
Für weitere Informationen steht Ihnen Jonas Matthies, Institut für Fertigungstechnik und Werkzeugmaschinen der Leibniz Universität Hannover, unter Telefon +49 511 762 18349 oder per E-Mail unter matthies@ifw.uni-hannover.de gern zur Verfügung.
Titan: Zu wertvoll für den Abfall. Neues Recyclingverfahren reduziert CO2-Ausstoßes um bis zu 80 Prozent – Institut für Fertigungstechnik und Werkzeugmaschinen – Leibniz Universität Hannover
Zu wertvoll für den Abfall: Bei der spanenden Fertigung von Titanbauteilen wird ein Großteil des Rohstoffs in Form von Spänen entsorgt. Die Zerspanraten für große Bauteile für die Flugzeugstruktur liegen beispielsweise oftmals über 90 Prozent. Dies will das Forschungsprojekt Return II federführend vom Institut für Fertigungstechnik und Werkzeugmaschinen der Leibniz Universität Hannover in Kooperation mit vier spezialisierten Industriepartnern aus dem Flugzeugbau und der Recycling Industrie ändern.
Ziel des Projekts ist, einen übergreifenden Werkstoffkreislauf zwischen additiven und subtraktiven Prozessketten für die Herstellung von Titanbauteilen zu entwickeln. „Wir wollen mit der Entwicklung einer Fertigungsprozesskette zur Umwandlung von Spanmaterial in Pulver eine Steigerung der Ressourcen- und Energieeffizienz erreichen“, erläutert Projektmitarbeiter Jonas Matthies.
Titanbauteile werden heute vorwiegend spanend aus Vollmaterial hergestellt. Das anfallende Spanmaterial – in der Luftfahrt mit einer Zerspanrate von bis zu 95 Prozent – wird im Anschluss üblicherweise nicht hochwertig recycelt, sondern in weniger anspruchsvollen Prozessketten (z. B. als Zuschlagsstoff in der Stahlindustrie) zugeführt. Matthies: „Beim Zerspanprozess werden die Titanspäne stark verunreinigt, unter anderem durch Oxidation, Kühlschmierstoffrückstände und Werkzeugpartikel. Diese Verunreinigungen erschweren das Recycling der Späne maßgeblich.“
Die aktuelle Prozesskette der Titanbauteilherstellung hat hinsichtlich Wirtschaftlichkeit, Energieeffizienz und Ressourcenschonung deutliche Defizite. Mit der Schaffung eines geschlossenen Werkstoffkreislaufs, bei dem ein Großteil der anfallenden Titanspäne für den Wiedereinsatz verwendet wird, wollen die Projetmitarbeiter diesen Defiziten begegnen. Der Forschungsansatz birgt ein beträchtliches ökologisches und ökonomisches Potenzial.
In Grundlagenuntersuchungen haben die Forscher des IFW bereits zeigen können, dass durch gezieltes Einstellen der Prozessgrößen die Verunreinigungen in den Titanspänen deutlich reduziert werden. Durch einen erneuten Einschmelzprozess konnte so Titanvollmaterial aus recycelten Spänen in hoher Qualität für Luftfahrt-Anwendungen hergestellt werden.
Jetzt untersuchen die Mitarbeiter des vom Bundeswirtschaftsministerium geförderten Projekts, ob und in welcher Weise sich die Ergebnisse aus den bisherigen Untersuchungen auf die Herstellung von Titanpulver für die additive Fertigung beziehen lassen. Dabei soll versucht werden, den energieintensiven Einschmelzprozess zu umgehen und die Späne direkt einem Verdüsungsverfahren zur Herstellung von feinstem Pulver zuzuführen. Matthies: „Durch eine Verwendung von Spänen als Eingangsmaterial in der Pulverherstellung erwarten wir eine Reduktion des Energieaufwandes und des CO2-Ausstoßes um bis zu 80 Prozent.“ Dies entspricht etwa 90 kg CO2/kg Titanpulver sowie 170 kWh/kg.
Durch die so zu erwartende Verbesserung der Wirtschaftlichkeit der additiven Fertigung von Titanbauteilen und der daraus zu erwartenden Steigerungen des Bauteilspektrums, ergeben sich weitere Potenziale für CO2-/Energiereduktionen. Die additive Fertigung eröffnet im Vergleich zur spanenden Bearbeitung neue Möglichkeiten hinsichtlich des Leichtbaus und bionischer Strukturen, die die Effizienz des Endprodukts erhöhen und somit zu weiteren Energieeinsparungen führen. Matthies: „Die mit den Projektpartnern entwickelte Prozesskette soll es ermöglichen, Titanbauteile aus bisher nicht recyceltem Titan ökologisch und kostengünstig herzustellen.“
Die Forscher versprechen sich mit einer anschließenden Analyse von additiv hergestellten Bauteilen Information über das gezielte einstellen von Bauteileigenschaften in der übergreifenden Prozesskette. Matthies: „Der Vorteil einer ganzheitlichen Betrachtung der Prozesskette liegt in dem Wissen der verschiedenen Wirkmechanismen an den verschiedenen Stationen der Fertigung. Durch Justieren dieser Stellschrauben ist es möglich, gezielt Bauteile mit spezifischen Materialeigenschaften herzustellen.“
Kontakt:
Für weitere Informationen steht Ihnen Jonas Matthies, Institut für Fertigungstechnik und Werkzeugmaschinen der Leibniz Universität Hannover, unter Telefon +49 511 762 18349 oder per E-Mail unter matthies@ifw.uni-hannover.de gern zur Verfügung.